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Variances for Adaptive Trimmed Means

John E. Boyer, Jr.
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& ABSTRACT

estimators are all trimmed means or means of trimmings

e

Variances for adaptive estimators of the location parameter in a
family of symmetric distributions including the uniform, normal, and

double exponential are examined at small to moderate sample sizes. The

where the propor-

tion of trimming is determined by an easily computed measure of nonnor-

mality. Comparisong are made to the asymptotic variances.
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Variances for Adaptive Trimmed Means

John E. Boyer, Jr.
Southern Methodist University

1. INTRODUCTION

In a recent article Prescott (1978) discussed the use of adaptive
trimmed means and means of trimmings for estimating a location parameter
from a symmetric family of distributions. The proportion of the sample
trimmed or retained is determined by the value of the quantity é, a mea-
sure of the length of the tails of the distribution based on the means of
groups of observations from the extremes of the ordered sample.

Asymptotic properties based on the corresponding population gquan-
tity, é, were derived for several different such estimates under the as-
sumption that the underlying distribution belongs to the exponential power
family of distributions. Since the population quantity will not, in prac-~

tice, be available, the corresponding properties are examined in the study

below and compared with the values found in Prescott's computations.

2. Asymptotic Variances for Trimmed Means

Let X < Xy <eos< X, be an ordered sample of size n from a popula-

tion distribution function F(x) and density function f(x). The a-trimmed

mean is defined as

1 n-[nal-1

Tiioza) . (2.1)

m(a) = x, +(1+ [ml'm)(x[na]+1+xn-[na])

i=[nal+2

The mean of the observations discarded in m(a) is the a-mean of the trimmings,
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denoted mc(a) and is given by

[na)

c
mo(@) = 5—94 L (x +x .. ) + (na-(nal) (x

. (2.2)
2na i=1

nal+l ¥ *n- (na]’

It should be noted that the limiting forms for these estimators are commonly
encountered estimators, i.e., m(0.5) is the median, m(0) = n(0.5) is the
mean and mc(O) is the midrange.

Prescott (1978) considers these estimators for the location parameter
6 in the exponential power family of symmetric distributions defined by the
density function

T
l - -
— elxel —m < x <o , T>1. (2.3)
2F(—;4

£(x) =

These distributions are symmetric about § with variance 03 = T(3/T)Y/T(1/T).
If we regard v = % as a continuous parameter in the interval [0,1], this
family may be thought of as containing distributions which change gradually
from the uniform (y=0), through short-tailed symmetric distributions to the
normal (y = %O, then through long-tailed symmetric distributions to the
double exponential (y=1).

Prescott discusses the robustness properties and derives the asymp-
totic variances for m(a) and mc(a) for distributions belonging to this family
by using influence curve techniques. As all of the above estimators are
unbiased for € in all of the distributions belonging to the exponential
power family, the asymptotic variance of the particular estimator, when
compared to the Cramér-Rao lower bound, provides a measure of the efficiency
of the estimation.

As different estimators from the family of trimmed means and means-~
of-trimmings are more efficient depending on which member of the exponential
family is being considered, adaptive estimation techniques enter in a natural

way. In particular, several statistics which choose a trimming proportion a
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based on the measure of nonnormality (or tailweight)

Q =(U(.OS)'I‘(.OS))/(U(.OS) ‘L(.so)) (2.4)

proposed by Hogg (1974), where U (E(BQ is the average of the largest

(8)
(smallest) nf order statistics, with fractional items used if nB is not
an integer, are presented as possible adaptive estimators for the expo-
nential power family. The choice of é over other measures of nonnormality
or tailweight such as sample kurtosis is discussed in detail in Hogg (1972,
1974) and Davenport (1971) and the choice of the particular 5% and 50% pro-
portions and some asymptotic properties for 6 are discussed there.

Prescott's computations of the variances of the above suggested
trimmed means are, however, based on knowledge of Q, the population quantity
which corresponds to é. Nevertheless, it is clear that in this situation,
Q would not be known to the statistician or there would be no need to adapt
in the first place.

Parr (1979) points out that the variance of an adaptive estimator will
be dependent on the relative frequency with which the adapting statistic, é
picks different trimming proportions. That is, the appropriate variances
to consider for the various adaptive estimators are the weighted sums of the
conditional variances, where the weights are the proportion of observations
that yield the corresponding values of é, and the conditioning is on the ob-
served é. Since Prescott's estimates of the variances use only the trimmed
mean or mean-of-the trimmings which appears to do best or "nearly" best for a
given member of the exponential power family, they do not truly reflect the
adaptive nature of the statistics. The results of taking that aspect of the
statistic 1nto account will be seen in the simulation discussed below.

Analytically, if T is the trimmed mean chosen by the adaptive proce-

dure, then Var T = E{Var([T|Q]} + Var{EIT|Q]). However, since all the trimmed

means are symmetric estimators and all of the members of the exponential
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family are symmetric distributions, E[TIQ] £ 6 and thus the second term will
always be zero. If TQ is chosen to (nearly) minimize Var[TQ], then

Var[Tlé] > var([T.], so Var T = {Var [T[Q]]iVar[TQl. Thus the asymptotic

Q
variances given by the influence curve calculations will in general be
smaller than the variances which can be achieved in practice, and the

difference can be attributed to the problem of estimating Q.

3. Adaptive Trimmed Means
The adaptive estimators investigated in the simulation study discussed
below are the same as those presented in Prescott. The first is an estimator

suggested by Hogg (1974) given by

mc(%) Q< 2.0
m(0) 2.0 :é < 2.6

T1= ~ (3-1)
m(3/16) 2.6 < Q < 3.2

m(3/8) 3.2 <Q .

The second is an estimator suggested by Prescott (and denoted by T* in that

article)
n°(.2) Q< 2.2
2°(.3) 2.2<Q< 2.4
7= { m( 2.4 <Q < 2.8 (3.2)
m(.2) 2.8 < é £ 3.0
m(.3) 3.0 < é .

The third, also suggested by Prescott, and denoted by T** there, is an extension
of the notion that more intervals for Q would produce asymptotic variances
closer to the minima suggested by the Cramér-Rac bounds. Thus the statistic

below adapts or adjusts continuously rather than in a step-wise fashion.

—)
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n° (0) =midrange 0 < 1.9 {
nC[(0-1.9)+0.7] 1.9 < Q < 2.6 ,

T3= ~ (3.3)
m[(Q-2.6)°0.7] 2.6 < Q < 3.3
j
m(.5) =median 3.3<Q .

The simulation consisted of 2000 repetitions for each of the three
statistics suggested above, at each of the nine parameter values Y==O(%)1
and at each of the three sample sizes n=10, 20, and 40. The results of

the simulation as well as the asymptotic variances provided by the influence

curve calculations and the values of the Cramér-Rao lower bound appear in
Table 1. In addition figures A, B and C are graphs of the corresponding

respectively, using diagrams as in

data for the estimators T., T2, and T

1 3

Prescott's work.

4. Properties of the Variances of m(a) and mc(a)

Since the adaptive estimator chosen is dependent on the value é,
estimation of Q is of interest in its own right. Davenport has shown
that for the uniform, normal and double exponential distributions, é is
asymptotically distributed as a normal random variable with mean Q and finite
variance. In the appendix to this paper, the condition on the distribution
required for that result is shown to hold for any member of the exponential
power family.

A

As seen in Figure D, the tendency is for Q to underestimate Q at

. small to moderate sample sizes. The results graphed there are the true

values of Q minus the averages of Q obtained from 2000 samples of the given

‘ sample size. Additionally, it is clear that the magnitude of the underesti-
mation increases as § or (1/t} increases, for any of the sample sizes studied.

This underestimation is a substantial factor in the variance calculations.
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As an example of the point illustrated in Section 3, consider the J
estimator T2 at 1/1=5/8 with samples of size 20. For this parameter con-

figuration Q is 2.77 so the asymptotic results are based on the sample mean,
which has (standardized) variance 1.0. In 2000 samples, however é was less
than 2.4 715 times, between 2.4 and 2.8 699 times, and larger than 2.8 586
times. Thus the sample mean is chosen only about 35% of the time, in
practice. The observed variance of 1.1222 reflects the fact that the 65%
of the time when estimators other than m(0) are chosen the variance will

be larger than that of m(0), which is nearly best among trimmed means and
means of trimmings.

On the other hand when the adaptive estimator does not choose a nearly
optimal trimming proportion, the finite sample results may give variances
which are smaller than those suggested by the asymptotic variances.

For example, for the 2000 samples of size 10 at 1/t = 1/8, the value
of é was less than 2.0 1358 times, between 2.0 and 2.6 572 times, between
2.6 and 3.2 66 times and larger than 3.2 4 times. Thus, if T, is the esti-

1

mator being considered, even though the population value of Q is 2.05 and

the sample mean, m(0), is the estimator tl it should be chosen, more than
67% of the sample runs choose mc(1/4). The variance for this estimator
could therefore also be expected to be quite different from that of the
sample mean. In fact, mc(1/4) with asymptotic variance .5869, is a good
deal closer to the best trimmed mean or mean of trimmings available for
1/t = 1/8 than the sample mean. Thus the estimator Tl’ for samples of
size 10 actually performs considerably better than the asymptotic variance
would suggest. This is reflected in Figure A, and Table 1 where the
variance for samples of size 10 is seen to be .8216, while the asymptotic

value is 1.0. Note that the best available estimator at y=1/8 is a mean

of trimmings with o between .05 and .10, with an asymptotic variance of

. e — — | — .,J
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approximately .40.

A

that Q@ underestimates Q is advantageous.

his concluding section.

The estimator T3

It is seen that in this particular case, the fact

exhibits the properties claimed by Prescott in

Particularly for small samples (n < 20) and

long-tail (y > 1/2) distributions, Q severely underestimates the para-

meter Q.

Consequently, the trimming proportion chosen is considerably

smaller than the optimal one, and the resulting variance is considerably

larger than that of the optimal trimmed mean.

The performance is some-

what better for shorter-tailed distributions, but still not particularly

impressive.

begins to fare very well.

as any of the estimators studied.

made by Prescott.

By n = 40, the performance of T3

As the sample size increases however, the continuous adaptation

is as good

This coincides with the assertions

TABLE 1
. VARIANCES OF ESTIMATORS 1‘1, TZ' '.I‘y BASED ON 2000 SAMPLES

/1 000 125 .250 . 375 . 500 .675 . 750 .87%

o] 1.90 2,05 2.20 2.40 2.58 2.77 2.95 3.13

ne= 10 . 7692 .8216 1.0124 1.0805% 1.1140 1.0608 1.0344 1.0242

T n = 20 . 7564 .8670 1.0163 1.0973 1.0592 1.0253 .9388 .8597

H n = 40 .6710 .8079 1.0428 1.0580 1.0301 .9660 .9302 .7895

asympt .5000 1.0000 1.0000 1.0000 1.0000 .9389 . 8655 . 7552

n =10 .6327 .7140 .94M 1.0970 1.2435 1.2459 1.291% 1.371m1

Tz nw= 20 .5524 .67613 .8891 1.0750 1.1254 1.1222 1.0657 1.0014

n = 40 .4570 5773 .8632 1.0023 1.0719 1.0126 .9871 .8506

asympt .4000 .5186 . 7966 1.0000 1.0000 1.0000 .8632 .70

n=10 .5682 . 7014 1.0168 1.1937 1.3902 1.3593 1.4454 1.5070

T3 n =20 .4049 +660S 9474 1.1645 1.2328 1.1912 1.11%2 1.0206

n = 40 2374 .585%0 .9262 1.0734 1.1206 1.0497 1.0060 .8530

asympt .0000 .4259 . 7566 .9468 1.0013 .9397 8575 .6883
Cramfr~Rao

Lower Bound .0000 . 3924 7295 .9358 1.0000 .9485S . 8225 .6626




Figure A. ASYMPTOTIC VARIANCE OF Tl AND VARIANCE USING SAMPLES OF SIZE 10,20 AND 40
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Figure B. ASYMPTOTIC VARIANCE OF T, AND VARIANCE USING SAMPLES OF SIZE 10,20 AND 40
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Figure C. ASYMPTOTIC VARIANCE OF T. AND VARIANCE USING SAMPLES OF SIZE 10,20 AND 40
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Figure D. True Value of Q Minus Average Value of Q
for 2000 Samples from Exponential Power
Family of Distributions
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5. Concluding Remarks
Investigations using small to moderate sample size indicate that
adapting too closely may not be worth the effort. é will give only a
general idea of the value of Q, and at small sample sizes gives a value
that is too small. In fact, in a slightly different setting (a two-sample
problem) Randles and Hogg (1973) propose deciding that the underlying
digstributions are light, medium, or heavy tailed as

Q < 2.08 - 2/N,

2.08 - 2/N < Q < 2,96 - 5.5/N,

2,96 - 5.5/N < é;
respectively, where the samples are of size m and n and N = (m2 + nz)/m4-n.
In a different discussion, Hogg (1974) recommends an adapting scheme that
uses only one trimmed mean if the sample size is less than or equal to 10,
one of two adaptively chosen trimmed means if 10 < n < 20, one of three
adaptively chosen trimmed means if 20 < n < 30, etc., thus adapting more
closely as the sample size increases. Both of these suggestions and the
current study support Prescott's conclusion that if the sample size is
fairly large (n > 50) the continuously adapting T3 should be a useful robust

estimator, but if n < 50, and particularly if one suspects long-tailed non-

normality, then T2 might be preferable.

6. APPENDIX
In section 4, reference was made to the requirement on a distribution
in order that é might be asymptotically normal. In Davenport (1971, p. 8),
four conditions on a distribution are described as sufficient to ensure
that asymptotic property. The fourth condition, essentially a requirement

on smoothness of the tails of the distribution, comes directly from Chernoff

(1967, p. 61, Assumption 5). The Chernoff condition can be easily shown to
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be satisfied under the assumption that the distribution is a member of the

exponential power family of distributions (with the exception of T==, the
uniform distribution, for which the result can be shown directly) by way of
the following theorem which establishes the relationship between the density

and the cumulative distribution function for all members of the family.

— 1
2T (1+1/7)

member of the exponential power family, and let F(¢) be the corresponding

Theorem. Let f(x) = exp(-lx IT), 1 <1 <=, the density for a

cumulative distribution function. For any x > O

tx"L (1-F(0)) < £(0) < (Tx7 T+ (1-1)1/%) (1-F(x) .
Proof: The derivative of f(x) is -rxr-lf(x) and the derivative of 1- F(x)
is -f(x) so that
o

[ e ay
X

£(x)

—ty" a-Fiy)) LT f v 2 (1-F(y) ay
X

where the second equality follows from integration by parts. The second term in
the latter expression is positive and the first term in that expression is

rx't (1-F(x)). Thus £(x) z_rxt-l(l-F(x)) as desired.
Now replace 1 - F(y) in the second term by its upper bound~% yl"T £(y)
just obtained and the result is

-2 1-1

f(x) < Txr-l(l-F(x)) + t(1=-1) f yT %-y f(y)dy

X

= tx L (1-F () # (1-1) [ % £(y) dy
X

- 1
<tx"laereo + -0 $ S fpray
X

(1-F(x)) (1x" % +(r-1>§ y.




Combining gives

tx" 1P s £00 < @x a3 (1-F () Q.E.D.

Note that the inequalities are strict for Tt > 1 and when T = 1, the equality
1l - F(x) = £(x) holds for all x > 0. An equivalent result holds for x < O
and the two conditions together provide all the necessary machinery to

satisfy the Chernoff requirements.
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